
U.S. NAVAL ACADEMY

COMPUTER SCIENCE DEPARTMENT

TECHNICAL REPORT

On Quantifer Elimination by Virtual Term Substitution

Brown, Christopher W.

USNA-CS-TR-2005-07

August 24, 2005

USNA Computer Science Dept. ◦ 572M Holloway Rd Stop 9F ◦ Annapolis, MD 21403

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
24 AUG 2005 2. REPORT TYPE

3. DATES COVERED
 00-08-2005 to 00-08-2005

4. TITLE AND SUBTITLE
On Quantifer Elimination by Virtual Term Substitution

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
U.S. Naval Academy,Computer Science Department,572M Holloway Rd
Stop 9F,Annapolis,MD,21403

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

19

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

On Quantifier Elimination by Virtual Term

Substitution

Christopher W. Brown

Computer Science Department, Stop 9F

United States Naval Academy

572M Holloway Road

Annapolis, MD 21402

wcbrown@usna.edu

August 4, 2005

Abstract

This paper presents a new look at Weispfenning’s method of quantifier

elimination by virtual term substitution and provides two important im-

provements. Virtual term substitution eliminates a quantified variable by

substituting formulas in the remaining variables for each atomic formula

in which the quantified variable appears. This paper investigates the poly-

nomials that arise in substitution formulas Weispfenning proposed and,

based on this examination, provides a simpler substitution for the general

case, and alternate substitutions for several commonly occurring situtions.

Providing alternate substitutions allows virtual term substitution to make

choices that produce simpler output.

1 Introduction

Quantifier elimination for elementary real algebra is a fundamental problem
in symbolic computing. The great potential utility of quantifier elimination
algorithms is, however, offset by an equally great theoretical and practical com-
plexity. Thus, the search for improved algorithms that are capable of solving
interesting problems in a reasonable amount of time and space is important.

One successful result of this ongoing search is Weispfenning’s method of quan-
tifier elimination by virtual term substitution [4, 6, 5]. This method, restricted
to formulas that are linear or quadratic in the quantified variable, has been

1

implemented in the Redlog system [2], and has been applied successfully to a
number of practical problems (e.g. [7]).

The strength of quantifier elimination by virtual term substitution is that its
complexity is relatively unaffected by the number of parameters — i.e. un-
quantified variables — in the problem. The method has two weaknesses: First,
applying the method iteratively to eliminate several quantified variables may
not be possible because eliminating one variable may increase the degrees of re-
maining variables, thus violating the degree restrictions. Second, quantifier-free
equivalent formulas produced by the method tend to be very large, even when
simple quantifier-free equivalents exist.

The purpose of this paper is to provide a new perspective on virtual term sub-
stitution, and to apply this new perspective to help address the method’s weak-
nesses.

1.1 What’s new

Virtual term substitution is based on rewriting. A formula ∃x[F] is transformed
into an equivalent formula in which x does not appear by combining many copies
of F in which atomic formulas are substituted by more complex formulas. In this
paper we give a new analysis of which polynomials appear in these substitution
formulas and why. Using this analysis, we provide an improved substitution
(Section 3) for the algorithm’s general case: improved in that fewer atomic
formula and fewer distinct polynomials appear in the output formula. Generi-
cally, the improved method produces a formula in which the set of polynomials
occurring is a proper subset of those occurring in the original method’s output.

Also using our initial analysis, we provide alternate substitutions which may
be used in certain situations — allowing the method to evaluate alternatives
and choose the best substitution (see Section 4). In particular, substitutions
which use lower degree polynomials or which allow obvious simplifications can
be chosen.

Two detailed examples applying both improvements are given in Section 5. The
ideas presented here have not yet been implemented, so experimental data on a
wide range of benchmark problems cannot be given.

Finally, Section 6 applies the characterization from previous sections of the
polynomials appearing in substitutions to determine a new bound on the degree
of any irreducible factor of a polynomial appearing in the formula resulting from
eliminating a variable.

2

2 Evaluating a formula at a quadratic’s roots

Suppose we want to eliminate x from the formula ∃x[f = 0 ∧ F], where f =
ax2 + bx + c and each atomic formula in F is of the form g σ 0. Theorem 2.1
of [6] describes the virtual term substitution approach to solving this problem.
Virtual term substitution starts by substituting (−b±

√
D)/2a for x in F . Each

atomic formula g((−b±
√

D)/2a) σ 0 is then replaced by an equivalent formula
without radicals.

For the rest of this section we let f = ax2 + bx + c, D = b2 − 4ac, α+1 =
(−b +

√
D)/2a, α−1 = (−b −

√
D)/2a, and let g be an integral polynomial

of positive degree n in x. First we will prove some simple results concerning
g(α±1). Then we will restate the substitution described in Theorem 2.1 of [6].

2.1 Evaluating g at the roots of f

The following results provide several characterizations of the evaluation of a
polynomial at a root of a quadratic. They are the basis of this paper’s discussion
of virtual term substitution.

Lemma 1 For k ≥ 1, (−b +
√

b2 − 4ac)k = 2k−1
(
Uk + Vk

√
b2 − 4ac

)
, where

Uk and Vk are integral homogeneous polynomials of total degree k and k − 1
respectively, such that Uk − bVk has even integer content.

Proof. We proceed by induction on k. The lemma clearly holds for k = 1
since U1 = −b, V1 = 1, and U1 − bV1 = −2b. Suppose the lemma holds for some
k. Then

(−b +
√

b2 − 4ac)k+1 = 2k−1(Uk + Vk

√
b2 − 4ac)(−b +

√
b2 − 4ac)

= 2k−1
(
(−b(Uk − bVk) − 4acVk) + (Uk − bVk)

√
b2 − 4ac

)

By supposition, Uk − bVk = 2A for some integral polynomial A of total degree
k, which clearly must be homogeneous. Therefore,

−b(Uk − bVk) − 4acVk = −b(2A) − 4acVk = 2(−bA − 4acVk)

which has total degree k + 1 and is also clearly homogeneous. So (−b +√
b2 − 4ac)k+1 = 2kUk+1 + 2kVk+1

√
b2 − 4ac, where Uk+1 = −bA − 4acVk and

Vk+1 = A. Finally, we note that

Uk+1 − bVk+1 = −bA − 4acVk − bA = −2bA− 4acVk

which clearly has even integer content.

3

Theorem 1 Formal substitution of x = αp into g(x) yields (a∗+pb∗
√

D)/(2an),
where a∗ and b∗ are integral polynomials.

Theorem 2 Let a∗ and b∗ be as above and let δ = n mod 2. resx(f, g) = (a∗2−
b∗2D)/(4an) and sgn(g(α+1)g(α−1)) = sgn(a∗2 − b∗2D) = sgn(aδresx(f, g)).

Proof. By a well-known theorem (see for example [1]) resx(f, g) = anΠm
i=1g(αi),

where m = degx(f), n = degx(g) and the roots of f are α1, . . . , αm. So:

resx(f, g) = ang(−b+
√

D
2a)g(−b−

√
D

2a)

= an
(

a∗+b∗
√

D
2an

) (
a∗−b∗

√
D

2an

)

= (a∗2 − b∗2D)/(4an)

The rest follows easily.

Theorem 3 Let prem(g, f) = rx + s. Then

1. b∗ = r = psc1(g, f),

2. a∗ = 2as − br = −rfx(−s/r), and

3. 4anresx(f, g) = 4a(as2 − srb + r2c) = a∗2 − b∗2D.

Proof. Since prem(g, f) = rx + s, we have an−1g = Qf + rx + s, where Q is
a polynomial. So

an−1g(−b+
√

D
2a) = Q(−b+

√
D

2a)f(−b+
√

D
2a) + r(−b+

√
D

2a) + s

an−1g(−b+
√

D
2a) = r(−b+

√
D

2a) + s

g(−b+
√

D
2a) = 2as−rb+r

√
D

2an

Since prem(g, f) = sres1(g, f), r = psc1(g, f). That 2as − br = −resx(rx +
s, fx) = −rfx(−s/r) and 4anresx(f, g) = a∗2 − b∗2D = 4a(as2 − srb + r2c) are
easily checked by simple calculations.

2.2 Virtual term substitution with a quadratic constraint

We are now ready to restate the substitutions from Theorem 2.1 of [6], which
eliminate x from a formula of the form ∃x[f = 0 ∧ F].

4

Theorem 4 (Weispfenning) Let f = ax2 + bx + c and let g be an integral
polynomial of degree n in x. Let δ = n mod 2 and let R = 4a(as2 − srb + r2c).
Assuming a 6= 0 ∧ b2 − 4ac ≥ 0,

1. g(αp) = 0 ⇐⇒ pra∗ ≤ 0 ∧ R = 0.

2. g(αp) 6= 0 ⇐⇒ pra∗ > 0 ∨ R 6= 0.

3. g(αp) < 0 ⇐⇒ a∗aδ < 0 ∧ R > 0 ∨ praδ ≤ 0 ∧ (a∗aδ < 0 ∨ R < 0)

4. g(αp) ≤ 0 ⇐⇒ a∗aδ ≤ 0 ∧ R ≥ 0 ∨ praδ ≤ 0 ∧ R ≤ 0

Corollary 1 Given the assumptions above,

g(αp) < 0 ⇐⇒ a∗aδ < 0 ∧ R > 0 ∨ praδ < 0 ∧ (a∗aδ < 0 ∨ R < 0).

Proof. Note that 3) from above can be written equivalently as a∗aδ < 0∧R >
0 ∨ praδ < 0 ∧ (a∗aδ < 0 ∧ R = 0 ∨ R < 0). Recall that R = a∗2 − r2D, so
R < 0 =⇒ r 6= 0 and R = 0 ∧ r = 0 =⇒ a∗ = 0. So, praδ = 0 is inconsistent
with both a∗aδ < 0 ∧ R = 0 and R < 0.

There is some reason to consider this alternative substitution for g < 0, since
a simplifier that removes inconsistent subformulas might more easily recognise
an unsatisfiable branch with praδ < 0 rather than praδ ≤ 0 — if r was a sum
of squares, for instance.

Let Fαp
be the formula obtained by replacing each atomic formula g σ 0 with

the appropriate formula from Theorem 4. Let F−c/b be the formula obtained
by replacing atomic formula g σ 0 with res(bx + c, g), noting that if b 6= 0,
res(bx + c, g) = b2g(−c/b).

Theorem 5 (Weispfenning) Under the assumption a 6= 0 ∨ b 6= 0 ∨ c 6= 0

∃x[f = 0∧F] ⇐⇒ a = 0∧ b 6= 0∧F−c/b ∨ a 6= 0∧ b2 − 4ac ≥ 0∧ (Fα−1
∨Fα+1

).

This gives us quantifier elimination for formulas of the form ∃x[f = 0∧F] under
the assumption that a, b and c do not vanish simultaneously.

3 Evaluating a formula near a quadratic’s roots

Theorem 3.1 of [6] gives a method for eliminating x from a formula ∃xF that
does not necessarily have an equational constraint, provided that all irreducible

5

factors of polynomials in F (recall that atomic formulas are normalized to g σ 0)
have degree at most two. The approach is based on introducing the positive
infinitesimal ε in the substituted expressions and formal substitution of −∞.

The idea is as follows, there is an x satisfying F if and only if F is satisfied at
x = α or x = α + ε for some real root α of a polynomial in F , or at x = −∞.
This is clear because the truth value of F can only change as x passes through a
root of the left-hand side of some atomic formula. Thus, ∃x[F] is equivalent to
the disjunction of F evaluated at each of these candidate points. Weispfenning
improves on this by showing that if a polynomial f only appears in the atomic
formulas f = 0 or f ≤ 0, the point x = α + ε where f(α) = 0 does not need to
be tested. Similarly, if f only appears in the atomic formulas f < 0 or f 6= 0,
the point x = α does not need to be tested.

In this section we restate Weispfenning’s original virtual term substitution method,
then provide a different substitution for infinitesimal expressions, one that uses
fewer atomic formulas and, more importantly, fewer distinct polynomials. In
particular, the polynomials in the resulting formula are the same regardless of
whether or not substitution of infinitesimals is required.

3.1 Virtual term substitution for formulas with x-degree

at most 2

Evaluating F at a point α, where α is the root of the left-hand side of some
atomic formula, has already been addressed. Evaluating F at −∞ is straight-
forward. Therefore, evaluating F at α + ε, where α is the root of the left-hand
side of some atomic formula, is what remains. Weispfenning accomplishes this
by considering the derivatives of polynomials appearing in F , and thus reduces
the determination of the sign of a polynomial g at α+ ε to the determination of
the sign of g and its derivatives at α. In short, the infinitesimals are removed,
but at the cost of introducing new polynomials.

Theorem 6 (Weispfenning) Let f = ax2 + bx + c and let g = agx
2 + bgx + cg.

Assuming a 6= 0 ∧ b2 − 4ac ≤ 0,

1. g(αp + ε) = 0 ⇐⇒ ag = 0 ∧ bg = 0 ∧ cg = 0

2. g(αp + ε) 6= 0 ⇐⇒ ag = 0 ∨ bg = 0 ∨ cg = 0

3. g(αp+ε) < 0 ⇐⇒ g(αp) < 0∨g(αp) = 0∧(gx(αp) < 0∨gx(αp) = 0∧ag < 0)

4. g(αp + ε) ≤ 0 ⇐⇒ g(αp + ε) = 0 ∨ g(αp + ε) < 0.

Assuming a = 0 ∧ b 6= 0, all of the above holds simply replacing αp with −c/b.

6

Let Fαp+ε denote the formula obtained by carrying out the a 6= 0 substitutions
for each element of F . Let F−c/b+ε denote the formula obtained by carrying
out the a = 0 substitutions for each element of F . Let F−∞ denote the formula
obtained by replacing g = 0 with

∧n
i=0 gi = 0, g 6= 0 with

∨n
i=0 gi 6= 0, and

g < 0 with
∨n

i=0

(

(−1)igi < 0 ∧
∧n

j=i+1 gj = 0
)

, where g = gnxn + · · · + g0.

Let fi = aix
2 + bix + ci be the polynomial occurring in the ith atomic formula,

fi σi 0. Let Di = b2
i − 4aici and let αi,±1 = (−bi ±

√

b2
i − 4aici)/(2ai). Let I

and J be the sets of indices i such that σi is =,≤ and <, 6=, respectively.

Theorem 7 (Weispfenning) ∃x[F] is equivalent to

∨

i∈I

(
ai = 0 ∧ bi 6= 0 ∧ F−ci/bi

∨ ai 6= 0 ∧ Di ≥ 0 ∧ (Fαi,+1
∨ Fαi,−1

)
)

∨
∨

i∈J

(
ai = 0 ∧ bi 6= 0 ∧ F−ci/bi+ε ∨ ai 6= 0 ∧ Di ≥ 0 ∧ (Fαi,+1+ε ∨ Fαi,−1+ε)

)

∨
F−∞

Notice that if there are no strict inequalities there is no need to evaluate at a
point defined by infinitesimals. Evaluation at infinitesimals can be undesirable
because substitutions for g(αp + ε) < 0 and g(αp + ε) ≤ 0 require substitutions
for gx(αp + ε) < 0, which means more atomic formulas in the substituted ex-
pressions, and more distinct polynomials. That the expression substituted for
gx(αp + ε) < 0 really contains additional polynomials can be checked by simple
calculation.

• If f = ax2 + bx + c and g = ux2 + vx + w, then r = av − ub, a∗ =
2a2w − 2auc − bav + ub2, and R = 4a(u2c2 − 2ucaw + a2w2 − vubc −
vbaw + av2c + wub2).

• If f = ux2 + vx + w and g = ax2 + bx + c, then r = −(av − ub), a∗ =
2u2c−2uaw−vub+av2, and R = 4u(u2c2−2ucaw+a2w2−vubc−vbaw+
av2c + wub2).

• If f = ax2 + bx + c and g = 2ux + v, then r = 2u, a∗ = 2(av − ub), and
R = 4a(4u2c − 2vub + av2)

This shows clearly that the substitution for g(αp + ε) < 0 contains the polyno-
mial 4u2c − 2vub + av2 which is a part of neither the substitutions for g(αp)σ0
nor f(βp)σ0, where βp is a root of g. Thus, generically, the quantifier-free for-
mula produced by Theorem 7 contains more atomic formulas and more distinct
polynomials when infinitesimals are required than when they are not.

7

3.2 A simpler substitution for infinitesimals

In this section we give a simpler substitution for infinitesimals — one that uses
fewer atomic formulas but which, more importantly, uses the same polynomials
as are used without infinitesimals. The key observation (see Theorem 3) is that
a∗ = −rfx(−s/r), so that if R = 0 6= r, the signs of a∗ and r give the sign of fx

at the common root of f and g.

Let f, r, s and a∗ be as before, but let g = agx
2 + bgx + cg . Let prem(f, g) =

rgx + sg , and note that rg = −r and sg = −s, since prem(f, g) = −prem(g, f).
Let b∗g = rg = −r and let a∗

g = 2agsg − bgrg = −rggx(−sg/rg) = rgx(−s/r).

Theorem 8 g(αp + ε) < 0 is equivalent to

R > 0 ∧ a∗aδ < 0 ∨ praδ < 0 ∧ (a∗aδ < 0 ∨ R < 0)
∨

R = 0 ∧
(
r = 0 ∧ pag < 0 ∨ a∗pr ≤ 0 ∧ ra∗

g < 0 ∨ a∗pr < 0 ∧ a∗
g = 0 ∧ ag < 0

)

under the assumption a 6= 0∧ b2 − 4ac ≥ 0 for p = +1 and a 6= 0∧ b2 − 4ac > 0
for p = −1.

Proof. g(αp + ε) < 0 is equivalent to g(αp) < 0 ∨ g(αp) = 0 ∧ (gx(αp) <
0 ∨ gx(αp) = 0 ∧ ag < 0). The first line of the substitution formula from the
theorem statement is equivalent to g(αp) < 0 by Theorem 4 and Corollary 1, so
we focus on the g(αp) = 0 case.

g(αp) = 0 is equivalent to a∗pr ≤ 0 ∧ R = 0. If R = r = 0, f and g have the
same roots. In this case, g(αp + ε) < 0 if and only if the roots are distinct and
the sign ag is opposite of p, or αp is a double root, in which case the sign of ag

must be negative: i.e. b2 − 4ac > 0∧ pag < 0∨ b2 − 4ac = 0∧ ag < 0. If p = +1
or b2 − 4ac > 0 this can be simplified to pag < 0.

If R = 0 6= r ∧ a∗pr ≤ 0 then f and g have the single common root αp = −s/r.
In this case, a∗

g = rgx(−s/r) = rgx(αp). Therefore, rgx(αp) < 0 ⇒ g(αp+ε) < 0
and rgx(αp) > 0 ⇒ g(αp + ε) > 0 . If rgx(αp) = 0, αp is a double root of g and
a simple root of f , so g(αp + ε) < 0 ⇐⇒ ag < 0.

So, g(αp) = 0 ∧ g(αp + ε) < 0 is equivalent to

R = 0 ∧ r = 0 ∧ pag < 0 ∨ R = 0 ∧ a∗pr ≤ 0 ∧ ra∗
g < 0 ∨

R = 0 ∧ a∗pr ≤ 0 ∧ r 6= 0 ∧ a∗
g = 0 ∧ ag < 0

(1)

assuming a 6= 0 ∧ b2 − 4ac ≥ 0 when p = +1 and a 6= 0 ∧ b2 − 4ac > 0 when
p = −1.

8

If R = 0 6= r, a∗ = a∗
g = 0 implies fx(−s/r) = gx(−s/r) = 0. But this means

f and g share a double root, which contradicts r 6= 0. Thus, R = 0 ∧ a∗pr ≤
0 ∧ r 6= 0 ∧ a∗

g = 0 ∧ ag < 0 is false when a∗ = 0, and we may simplify it to
R = 0 ∧ a∗pr < 0 ∧ a∗

g = 0 ∧ ag < 0. So (1) simplifies to

R = 0 ∧
(
r = 0 ∧ pag < 0 ∨ a∗pr ≤ 0 ∧ ra∗

g < 0 ∨ a∗pr < 0 ∧ a∗
g = 0 ∧ ag < 0

)
.

The previous theorem showed that when both f and g have degree two g(αp +
ε) σ 0 and f(βq +ε) ρ 0 can be rewritten without radicals or infinitesimals using
the same polynomials that are used in rewriting g(αp) σ 0 and f(βq) ρ 0 without
radicals. The next theorem shows the same thing when f has degree two and g
has degree one.

Theorem 9 If g = ux + v, where u 6= 0, and let β = −v/u, so that f(β) = 0.
Let R = R/(4a), noting that the division is exact.

f(β + ε) < 0 ⇐⇒ R < 0 ∨ R = 0 ∧ (−ua∗ < 0 ∨ a∗ = 0 ∧ a < 0).

Note that we do not assume that a 6= 0.

Proof. First note that R/(4a) = resx(f, g) = resx(g, f) = u2f(β), so that the
sign of R is the sign of f(β). Then note that prem(g, f) = g = ux + v, so r = u
and s = v. Thus, by Theorem 3, a∗ = −rfx(−s/r) = −ufx(β). Since u 6= 0,
sgn(fx(β)) = sgn(−ua∗). So, f(β + ε) < 0 is equivalent to

R < 0
︸ ︷︷ ︸

f(β)<0

∨R = 0 ∧ −ua∗ < 0
︸ ︷︷ ︸

f(β)=0∧fx(β)<0

∨R = 0 ∧ a∗ = 0 ∧ a < 0
︸ ︷︷ ︸

f(β)=fx(β)=0∧a<0

.

The important thing about this theorem is that it shows that rewriting f(β+ε) <
0 (or ≤ 0) does not require any polynomials that are not already required in
rewriting g(αp) σ 0. Notice that g(αp + ε) can be rewritten by specializing
Theorem 8 setting ag = 0, bg = u, cg = v.

Finally, note that substitution in the case where both f and g are linear is
straightforward. If f = ax + b, α = −b/a, and g − ux + v, then g(α) σ 0 is
equivalent to a resx(f, g) σ 0, and g(α+ε) < 0 is equivalent to g(α) < 0∨g(α) =
0∧u < 0. Thus, for any combination of degrees of f and g we have substitutions
for roots, possibly with infinitesimals, that involve at most the coefficients of f
and g, discriminants, pairwise resultants, first principal subresultant coefficients,
and a∗ and a∗

g . Using the substitutions from Theorem’s 8 and 9, we must use
the following slight modification of Theorem 7:

9

Theorem 10 ∃x[F] is equivalent to

∨

i∈I

(
ai = 0 ∧ bi 6= 0 ∧ F−ci/bi

∨ ai 6= 0 ∧ Di ≥ 0 ∧ (Fαi,+1
∨ Fαi,−1

)
)

∨
∨

i∈J

ai = 0 ∧ bi 6= 0 ∧ F−ci/bi+ε ∨ ai 6= 0 ∧

Di ≥ 0 ∧ Fαi,+1+ε

∨
Di > 0 ∧ Fαi,−1+ε

∨
F−∞

The difference between Theorem 10 and Theorem 7 is that instead of assuming
Di ≥ 0 for both Fαi,+1+ε and Fαi,−1+ε, we assume Di ≥ 0 for Fαi,+1+ε, and
assume Di > 0 for Fαi,−1+ε. We do this, of course, to meet the requirements
of Theorem 8. However, it makes a certain sense, because now the Di = 0 case
is covered by just one subformula. Another tangible benefit of this comes from
the nice way we can substitute for f(αp + ε) < 0, i.e. f evaluated to the right
of one of its own roots. This can now be rewritten as a < 0 when p = +1 and
a > 0 for p = −1, because the possibility of a double-root when p = −1 has
been eliminated.

4 A different view of virtual term substitution

The fundamental question to be addressed in the quadratic case of virtual sub-
stitution is this: What is the sign of g at root αp of f = ax2+bx+c? (Assuming,
of course, that a 6= 0 and b2 − 4ac ≥ 0.) The answer to this question has to
be expressed as a combination of polynomial equalities and inequalities in the
remaining variables — i.e. without x. In this section we give a geometric view
of how this is done and, based on that view, suggest alternatives to the substi-
tutions given in Theorem 4.

4.1 A geometric view of evaluation at roots of f

Recall that R = 4anresx(f, g), so that R has the same sign as the product
of g evaluated at the two roots of f . There is a geometry to this problem of
determining the sign of g at αp that can be seen quite clearly by considering r
and s in R = 4a(as2 − srb + r2c) as variables and a, b, and c as constant. R is
the product of two lines through the origin:

R = 4a2
(

−b+
√

b2−4ac
2a r + s

) (
−b−

√
b2−4ac
2a r + s

)

For a specific g: If (r, s) falls on the first line g(α+) = 0. If (r, s) falls below the
first line g(α+) < 0 . If (r, s) falls on the second line g(α−) = 0. If (r, s) falls

10

below the second line, g(α−) < 0. In other words, the sign of g(αp) is determined
by where (r, s) falls with respect to these two lines. Figure 4.1 illustrates this
for a specific f .

r

s

g = −x + 3x − 12

2 g(a−) = 0
g = 2x − 1

g(a+) = 0

Figure 1: The region in which g(α+) < 0, for f = x2 + x − 1. Points in the
(r, s)-plane corresponding to two different g’s are shown.

Of course we do not want to evaluate −b+
√

b2−4ac
2a r + s and −b−

√
b2−4ac
2a r + s

directly, because they involve radicals. Instead we evaluate R, a multiple of
their product. However, there are 9 possible combinations of sign for the two
linear factors, and only 3 possible signs for R. Thus, other polynomials need to
be introduced to distinguish between regions in which the sign of R is the same,
but the signs of the linear factors are different. This is precisely the role of r
and a∗.

Since r = 0 =⇒ R > 0, r always separates the two regions in which R < 0.
Since 4a2, the leading coefficient of R as a polynomial in s, is always positive,
∂R/∂s = 4a(2as− rb) = 4aa∗ always separates the two regions in which R > 0.
Geometrically, r and a∗ do nothing more than distinguish between disconnected
regions in which R has the same sign. (Except at the origin, where they partition
R = 0 into five distinct regions.)

One might consider whether different polynomials could be used to distinguish
these regions. This would provide different substitutions than those from The-
orem 2.1 of [6]. Since the original substitutions are based on r and ∂R/∂s, in
the following section we examine cases in which s and ∂R/∂r can be used as
separating polynomials instead.

4.2 Alternate substitutions

In this section we at a few alternatives to the substitutions based on r and
a∗ given by Weispfenning. Whether or not these substitutions may be applied
depends on the coefficients of f , but is independent of g.

11

If ac < 0 we note that R is the product of two lines with opposite slopes (see
the left plot from Figure 4.2). In this case s = 0 separates the R < 0 regions
just as does 2as − rb = 0, and ∂R/∂r = 4a(2cr − bs) = 0 separates the R < 0
regions just as does r = 0.

δδR / r = 0

a c < 0 a c > 0
δδR / r = 0

s = 0

R > 0

R > 0

s = 0

R > 0

R > 0

Figure 2: Plots of R, s and ∂R/∂r in (r, s)-space for ac < 0 and ac > 0.

If ac > 0, R is the product of two lines, both of which have positive slope if ab >
0, and negative slope if ab < 0 (see the right plot from Figure 4.2). In this case
s = 0 separates the R > 0 regions just as does r, and ∂R/∂r = 4a(2cr− bs) = 0
separates the R < 0 regions just as does 2as− rb = 0.

Based on these observations, a variety of alternate substitutions can be formu-
lated whose applicability is dependent on the signs of ac and R. Figure 4.2 lists
some of them (note that c∗ is used to refer to 2cr − bs, so that ∂R/∂r = 4ac∗).
Each entry has been verified using quantifier elimination — Mathematica, Red-
log and Qepcad b all verify them almost instantly. At first glance, replacing a∗

or r in the substitutions from Theorem 4 seems to require assumptions about
the sign of R as well as ac. With one exception, however, a∗ and r only appear
in conjunction with the required sign condition on R, so that really only the
sign of ac constrains our use of alternatives for a∗ or r. The one exception is

If ac > 0 ∧ b2 − 4ac ≥ 0 then

R ≤ 0 =⇒ sgn(r) = sgn(abs)
R ≥ 0 =⇒ sgn(a∗) = sgn(−abc∗)
R = 0 =⇒ sgn(a∗r) = sgn(−c∗s)
R ≤ 0 =⇒ (r = 0 ⇐⇒ s = 0)
R ≥ 0 =⇒ (a∗ = 0 ⇐⇒ c∗ = 0)

If ac < 0 ∧ b2 − 4ac ≥ 0 then

R ≤ 0 =⇒ sgn(r) = sgn(−ac∗)
R ≥ 0 =⇒ sgn(a∗) = sgn(as)
R = 0 =⇒ sgn(a∗r) = sgn(−c∗s)
R ≤ 0 =⇒ (r = 0 ⇐⇒ c∗ = 0)
R ≥ 0 =⇒ (a∗ = 0 ⇐⇒ s = 0)

If ac 6= 0 ∧ b2 − 4ac ≥ 0 then {R = 0 =⇒ sgn(a∗r) = sgn(−c∗s)

Figure 3: Alternate substitutions.

12

substitution (3) of Theorem 4, in which praδ ≤ 0∧a∗aδ is not explicitly guarded
by any sign condition on R. The following theorem, whose simple proof we omit,
states that R = 0 is actually implicit in this case, and therefore that we may
freely replace a∗ and r in the substitutions from Theorem 4 with the alternatives
given in Figure 4.2 based solely on the sign of ac.

Theorem 11 If R ≥ 0 implies X ⇐⇒ a∗aδ < 0 and R ≤ 0 implies Y ⇐⇒
praδ ≤ 0, then X can be used interchangeably with a∗aδ < 0 and Y can be used
interchangeably with praδ ≤ 0 in substitution (3) of Theorem 4.

In asking whether these substitutions are useful, it is helps to consider what
happens generically. For example, when f = ax2 + bx+ c and g = ux2 +vx+w,
we have r = av − ub, s = aw − uc, a∗ = 2a2w − 2auc − bav + ub2 and c∗ =
2cav − cub − baw. Clearly in this generic case, both s and c∗ are ”better”
substitutions than a∗. In the non-generic case, when coefficients are constants
or are algebraicly related, any one of these can be good or bad substitutions.
What’s interesting is that can generate each of them and choose the substitution
that works best for each f, g combination in the context of the problem to be
solved. Section 5.1 provides an interesting application of this approach.

5 Examples

This section steps through two example computations — the first involving a
quadratic constraint, the second involving infinitesimals. The results of using
the original substitutions are compared with using the improved substitution for
infinitesimals from Section 3.2 and the alternate substitutions from Section 4.2.
One difficulty in going through examples of virtual term substitution in detail
is that the formulas are so large that they are hard to look at. We will endeavor
to ameliorate this by showing only key parts of the substituted formulas, and by
performing some reasonable simplifications before substituting. Also, we note
that R = anresx(f, g), so where R appears in formulas we will use aδR, where
R = resx(f, g).

5.1 An example from epidemiology

Andreas Weber and his colleagues have been working on applying symbolic tools
to investigations of epidemiological models, this example comes from his work.
In considering the existence of an ”endemic equilibrium” for the SEIT model
[3], a system of ODEs used to model tuberculosis and other diseases, one arrives
after straightforward calculations at the following formula:

∃S [f(S) = 0 ∧ −S < 0 ∧ S − 1 < 0]

13

where f = νβ1(β2 − β1)S
2 + (dβ1r2 − d2β2 + d2β1 + β1r1r2 − dνβ2 + νβ1qr2 −

dβ2r2+dνβ1−β1νβ2+β1r1d)S+β2d(d+ν+r2), all parameters are positive, and
β1 > β2. Note that the assumptions on the parameters imply that the coefficient
of S2 is negative and the coefficient of S0 is positive. We will apply virtual term
substitution to this problem. For the sake of brevity, however, we will not give
the a = 0 substitution or the α+1 substitution, both of which produce obviously
unsatisfiable subformulas. Thus, the quantified input formula is equivalent to:

a 6= 0 ∧ D ≥ 0 ∧ g1(α−1) < 0 ∧ g2(α−1) < 0,

where g1 = −S and g2 = S − 1. Since the quadratic and constant coefficients
have opposite signs, a 6= 0 ∧ D ≥ 0 is always true, so we will proceed with
g1(α−1) < 0 ∧ g2(α−1) < 0. Since p = −1, g1 and g2 have degree 1, and a
is always negative we will reduce a∗aδ < 0 ∧ aδR > 0 ∨ praδ ≤ 0 ∧ (a∗aδ <
0 ∨ aδR < 0) to

−a∗ < 0 ∧ −R > 0 ∨ r ≤ 0 ∧ (−a∗ < 0 ∨ −R < 0)

Following Weispfenning’s original substitutions restated in Theorem 4, we get:

−(dβ1r2 − β2d
2 + d2β1 + β1r1r2 − νβ2d + νβ1qr2 − β2dr2 + dνβ1 − β1νβ2

+β1r1d) < 0 ∧ −(dβ2(d + ν + r2)) > 0 ∨ −1 ≤ 0 ∧ [−(dβ1r2 − β2d
2

+d2β1 + β1r1r2 − νβ2d + νβ1qr2 − β2dr2 + dνβ1 − β1νβ2 + β1r1d) < 0
∨ − (dβ2(d + ν + r2)) < 0]

∧

−(2νβ2
1 − β1νβ2 − dβ1r2 + β2d

2 − d2β1 − β1r1r2 + νβ2d − νβ1qr2 + β2dr2

−dνβ1 − β1r1d) < 0 ∧ −(β1(−β1ν + r2d + d2 + r1r2 + νqr2 + dν
+dr1)) > 0 ∨ 1 ≤ 0 ∧ (−(2νβ2

1 − β1νβ2 − dβ1r2 + β2d
2 − d2β1−

β1r1r2 + νβ2d − νβ1qr2 + β2dr2 − dνβ1 − β1r1d) < 0 ∨ −(β1(−β1ν
+r2d + d2 + r1r2 + νqr2 + dν + dr1)) < 0)

.

Noting that dβ2(d + ν + r2) is always positive and simplifying away inequalities
involving only constants, we get:

2νβ2
1 − β1νβ2 − dβ1r2 + β2d

2 − d2β1 − β1r1r2 + νβ2d − νβ1qr2 + β2dr2

−dνβ1 − β1r1d > 0 ∧ −β1ν + r2d + d2 + r1r2 + νqr2 + dν + dr1 < 0
(2)

However, we are in the ac < 0 case, so we may replace a∗ with as according
to Figure 4.2. Since s1 = 0 and s2 = −1 and a is known to be negative, this
alternate substitution is well worth taking. With it we get:

[
−(−0) < 0 ∧ −(dβ2(d + ν + r2)) > 0∨

−1 ≤ 0 ∧ [−(0) < 0 ∨ −(dβ2(d + ν + r2)) < 0]

]

∧

−(−(−1)) < 0 ∧ −(β1(−β1ν + r2d + d2 + r1r2 + νqr2 + dν + dr1)) > 0
∨1 ≤ 0∧

[
−(−(−1)) < 0 ∨ −(β1(−β1ν + r2d + d2 + r1r2 + νqr2 + dν + dr1)) < 0

]

14

After making the obvious simplifications we get:

−β1ν + r2d + d2 + r1r2 + νqr2 + dν + dr1 < 0 (3)

The final simplification of (2) to (3) is not trivial. The assumptions on the
parameters do not imply the positivity of the extraneous polynomial. It is only
those assumptions in conjunction with −β1ν+r2d+d2+r1r2+νqr2+dν+dr1 < 0
that imply it. This is a simplification that Redlog’s simplifier, for example, is
not able to make.

5.2 Substituting infinitesimals

Let f = ax2+bx+1 and g = ux2+vx−1. We consider the formula ∃x[f < 0∧g <
0] under the assumption a, u > 0. First we will follow the original method, then
we will apply the improved substitutions for infinitesimals as well as alternate
substitutions from the previous section. Rather than write out the entire formula
here, we simply write out the set of polynomials appearing in the formula, and
show one representative subformula, the substitution for g(α−1 + ε) < 0. In
addition to the coefficients of f and g, the following polynomials appear in the
formula produced by Theorem 7:

Df = b2 − 4a, Dg = v2 + 4u, r = av − ub, s = −a − u

R = u2 + 2au + a2 − vub + bav + av2 − ub2

a∗ = −2a2 − 2au− bav + ub2, a∗
g = 2u2 + 2au− vub + av2

Rgx
= 4u2 − 2vub + av2, Rfx

= −4a2 − 2bav + ub2

c∗ = 2av − ub + ab, c∗g = av − 2ub− vu

(4)

The original substitution for g(α−1 + ε) < 0 is:

g(α−1)<0
︷ ︸︸ ︷

a∗ < 0 ∧ R > 0
∨ − r ≤ 0∧

(a∗ < 0 ∨ R < 0))

∨

−ra∗ ≤ 0
∧

R = 0

︸ ︷︷ ︸

g(α−1)=0

∧

gx(α−1)<0
︷ ︸︸ ︷

2ra < 0 ∧ aRgx
> 0

∨ − 2ua ≤ 0∧
(2ra < 0 ∨ aRgx

< 0))

∨
−4ur ≤ 0 ∧ aRgx

= 0 ∧ 2u < 0
︸ ︷︷ ︸

gx(α−1)=0∧2u<0

Although the other substitutions are not shown, it should be clear that the
entire formula is constructed out of the polynomials in (4) and a, b, u, v.

The substitution given in Section 3.2 gives the following for g(α−1 + ε) < 0:

(a∗ < 0 ∧ R > 0 ∨ −r ≤ 0 ∧ (a∗ < 0 ∨ R < 0))
∨

R = 0 ∧ (r = 0 ∧ −u < 0 ∨ −a∗r ≤ 0 ∧ ra∗
g < 0 ∨ −a∗r < 0 ∧ a∗

g = 0 ∧ u < 0)

15

Although the other substitutions are not shown, it should be clear that the
entire formula is constructed out of a, b, u, v and the polynomials in (4) minus
Rgx

and Rfx
.

Clearly f falls in the ac > 0 case and g falls in the ac < 0 case discussed in
Section 4.2. Thus, we may choose alternate substitutions given there. This
leads to a substitution for g(α−1 + ε) < 0 of:

(−abc∗ < 0 ∧ R > 0 ∨ −abs ≤ 0 ∧ (−abc∗ < 0 ∨ R < 0))
∨

R = 0 ∧ (s = 0 ∧ −u < 0 ∨ sc∗ ≤ 0 ∧ sc∗g < 0 ∨ sc∗ < 0 ∧ us = 0 ∧ u < 0)

Whether or not this is ”better” than the previous formula depends on what
subsequent computation is desired. It is interesting, however, that it is trivial
to deduce that the input assumptions a, u > 0 implies s > 0, which then con-
siderably simplifies the formula. It is also interesting that after removing all
polynomials that, by inspection, never vanish given a, u > 0, this final version
contains only 2 polynomials that are not linear — R and Df . In contrast, the
original contains 4 non-linear polynomials. The potential advantage to alter-
nate substitutions is that a program may quickly examine the alternatives and
decide whether, as in this case, one offers advantages over the other.

6 Improved bound for virtual term substitution

The fact that resx(f, g) = (a∗2 − b∗2D)/(4an) allows one to tighten the most
general degree bound given in Corollary 2.2 of [6]. Suppose that M is the
maximum total degree of any polynomial in the input, and that d is the greatest
degree in x of any polynomial in the input.

Theorem 12 The highest degree of any irreducible factor of a polynomial ap-
pearing in the formula produced by Theorem 2.1 of [6] is (d + 2)M − 2d.

Proof. Note that the total degree of the coefficient of xm is at most M−m. The
candidates for the highest degree factors are b2−4ac, b∗, a∗ and a∗2−b∗2c. The
degree of b2 − 4ac is clearly bounded by 2M − 2. a∗2 − b∗2c is the determinant
of the Sylvester matrix for f and g, and r and s are given by minors of the
Sylvester matrix. We will show explicitly that the largest irreducible factor of
a∗2−b∗2c has total degree at most (d+2)M−2d. A similar approach shows that
r and s have total degrees at most dM − 2d + 1 and dM − 2d + 2, respectively.
Thus, a∗ = 2as− br has total degree at most max((M −1)+dM −2d+1, (M −
2) + dM − 2d + 2) = (d + 1)M − 2d.

resx(f, g) = (a∗2 − b∗2D)/(4an), the degree of the largest irreducible factor of
a∗2−b∗2D is bounded from above by the degree of resx(g, f). Assume g has the

16

maximal x-degree d. The rows of the Sylvester matrix for g and f correspond to
xg, g, xn−2f, xn−1f, . . . , x0f . The determinant is the sum of all products of one
element from each row and each column. Consider choosing elements to form
such a product. Suppose that i and j, i < j, are the indices of the entries chosen
from the first two rows. From columns 1, . . . , i − 1 we must choose the a entry
in order to get a non-zero product (a has degree at most M −2). From columns
j + 1, . . . , d + 2 we must choose the c entry to get a non-zero product (degree
M). The submatrix remaining after all these choices is tridiagonal with a’s
below, b’s on and c’s above the diagonal. Any entry chosen above the diagonal
must be matched with an entry below the diagonal, so the average total degree
is (M − 1). The product of the two entries from the first two rows has degree
2M − 2d + i + j − 3. Thus, any term in the determinant has degree at most

(i−1)(M−2)+(j−i−1)(M−1)+(d+2−j)M+(2M−2d+i+j−3) = (d+2)M−2d.

Corollary 2.2 of [6] gives a bound of (2d+2)M−2d on any polynomial appearing
in the formula. The new bound is approximately a factor of two improvement,
although of course it is a bound on the size of irreducible factors. The bound
from Corollary 2.2 also assumes that the total degree of f is not more than the
maximum total degree of p(F). The above analysis makes no such assumption.

7 Conclusion

This paper provides an analysis of the polynomials appearing in Weispfenning’s
method of quantifier elimination by virtual term substitution. Based on this
analysis, and simpler substitution is given for the evaluation of a formula at
x = α + ε, where α is the root of a quadratic polynomial and ε is a positive
infinitesimal. The paper proceeds with a new view on why certain polynomials
appear in substitutions and, based on this, proposes alternate substitutions.
These alternatives are not always applicable but, when they are, they allow
for an implementation of virtual term substitution that can choose amongst
alternatives in order to produce simpler formulas. Both of these improvements
are aimed at helping reduce the complexity of the result of quantifier elimination
by virtual term substitution, which is the method’s biggest problem.

8 Acknowledgements

This work was supported by NSF grant number CCR-0306440.

17

References

[1] Buchberger, B., Collins, G. E., Loos, R., and Albrecht, R., Eds.
Computer algebra: symbolic and algebraic computation (2nd ed.). Springer-
Verlag New York, Inc., New York, NY, USA, 1983.

[2] Dolzmann, A., and Sturm, T. Redlog: Computer algebra meets com-
puter logic. ACM SIGSAM Bulletin 31, 2 (June 1997), 2–9.

[3] van den Driessche, P., and Watmough, J. Reproduction numbers
and sub-threshold endemic equilibria for compartmental models of disease
transmission. Mathematical Biosciences 180 (2002), 29–48.

[4] Weispfenning, V. The complexity of linear problems in fields. Journal of
Symbolic Computation 5 (1988), 3–27.

[5] Weispfenning, V. Quantifier elimination for real algebra — the cubic case.
In Proc. International Symposium on Symbolic and Algebraic Computation
(1994), pp. 258–263.

[6] Weispfenning, V. Quantifier elimination for real algebra — the quadratic
case and beyond. AAECC 8 (1997), 85–101.

[7] Weispfenning, V. Simulation and optimization by quantifier elimination.
J. Symb. Comput. 24, 2 (1997), 189–208.

18

